Modelling potential snakebite risks of the endemic Iranian venomous snake Macrovipera razii (Serpentes: viperidae) under climate change

Main Article Content

S.M. Kazemi
M.S. Hosseinzadeh
S. Mohajer
M. Fois

Abstract

The potential distribution of one the most venomous snake species of Iran, the endemic Macrovipera razii, has been studied. A total of 54 occurrence records with four informative environmental variables, including temperature seasonality (bio4), annual precipitation (bio12), precipitation seasonality (bio15), and precipitation of driest quarter (bio17) for present and future periods were used for identifying suitable habitat. Annual precipitation (bio12) was the most important driving factor with 48 % of permutation importance, followed by precipitation seasonality (bio15) with 42.7 % of contribution to the modeling. According to our results and literature, the most suitable habitats of the species are in highland and mountainous regions. Western and southwestern regions of Iran are highly suitable areas for M. razii according to current conditions, which are highly compatible with its known distribution, with the exception of the predicted suitability in a small patchy region of northeastern Iran where another related taxon, Macrovipera lebetina subsp. cernovi, is present. Future predictions reveal a similar potential distribution. Further research on M. razii is crucial and should encompass various aspects such as the analysis of venom components, field studies, and comprehensive molecular investigations. These efforts are necessary to determine the taxonomic status of M. razii, understand its distribution patterns, and develop effective anti-venom treatments.

Article Details

How to Cite
Modelling potential snakebite risks of the endemic Iranian venomous snake Macrovipera razii (Serpentes: viperidae) under climate change. (2024). Life and Environment, 73(1/2), 35-41. https://doi.org/10.57890/
Section
Articles

References

Ahmadi M, Hemami MR, Kaboli M, Malekian M, Zimmermann NE 2019. Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Sci Rep 9: 6332. https://doi.org/10.1038/s41598-019-42792-9

Ahmadi M, Hemami MR, Kaboli M, Nazarizadeh M, Malekian M, Behrooz R, Geniez P, Alroy J, Zimmermann NE 2021. The legacy of Eastern Mediterranean mountain uplifts: rapid disparity of phylogenetic niche conservatism and divergence in mountain vipers. BMC Ecol Evol 21: 1-13. https://doi.org/10.1186/s12862-021-01863-0

Anenkhonov O 2009. Changes in the cenoflora of dark-coniferous forests of the Northern Baikal region under current climate warming. Geogr Nat Resour 30: 355-358. https://doi.org/10.1016/j.gnr.2009.11.009

Behroozian M, Ejtehadi H, Peterson AT, Memariani F, Mesdaghi M 2020. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLO S ONE 15: e0237527. https://doi.org/10.1371/journal.pone.0237527

Bickford D, Howard SD, Ng DJ, Sheridan JA 2010. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers Conserv 19: 1043-1062. https://doi.org/10.1007/s10531-010-9782-4

Bruno S 1985. Le Vipere d’Italia e d’Europa. Edagricole, Bologna.

Chikin YA, Szczerbak NN 1992. New subspecies of Vipera lebetina cernovi ssp. n. (Reptilia, Viperidae) from Middle Asia [in Russian]. Vestn Zool 6: 45-49.

Cruz LS, Vargas R, Lopes AA 2009. Snakebite envenomation and death in the developing world. Ethn Dis 9: 42-46. https://www.jstor.org/stable/48667815

Cuena-Lombraña A, Fois M, Fenu G, Cogoni D, Bacchetta G 2018. The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. Int J Biometeorol 62: 1283-1295. https://doi.org/10.1007/s00484-018-1533-3

Dadpour B, Shafahi A, Monzavi SM, Zavar A, Afshari R, Khoshdel A 2012. Snakebite prognostic factors: leading factors of weak therapeutic response following snakebite envenomation. Asia Pac J Med Toxicol 1: 27-33.

Dehghani R, Fathi B, Panjeh Shahi M, Jazayeri M 2014. Ten years of snakebites in Iran. Toxicon 90: 291-298. https://doi.org/10.1016/j.toxicon.2014.08.063

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib 17: 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Erfanian MB, Sagharyan M, Memariani F, Ejtehadi H 2021. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci Rep 11: 9159. https://doi.org/10.1038/s41598-021-88577-x

Farashi A, Erfani M 2018. Modeling of habitat suitability of Asiatic black bear (Ursus thibetanus gedrosianus) in Iran in future. Acta Ecol Sinica 38: 9-14. https://doi.org/10.1016/j.chnaes.2017.07.003

Fathinia B, Rödder D, Rastegar-Pouyani N, Rastegar-Pouyani E, Hosseinzadeh MS, Kazemi SM 2020. The past, current and future habitat range of the Spider-tailed Viper, Pseudocerastes urarachnoides (Serpentes: Viperidae) in western Iran and eastern Iraq as revealed by habitat modelling. Zool Mid East 66: 97-205. https://doi.org/10.1080/09397140.2020.1757910

Fois M, Cuena-Lombrana A, Fenu G, Cogoni D, Bacchetta G 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J Nat Conserv 33: 1-9. https://doi.org/10.1016/j.jnc.2016.06.001

Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G 2018a. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol Model 385: 124-132. https://doi.org/10.1016/j.ecolmodel.2018.07.018

Fois M, Cuena-Lombraña A, Fenu G, Cogoni D, Bacchetta G 2018b. Does a correlation exist between environmental suitability models and plant population parameters? An experimental approach to measure the influence of disturbances and environmental changes. Ecol Indic 86: 1-8. https://doi.org/10.1016/j.ecolind.2017.12.009

Freitas I, Ursenbacher S, Mebert K, Zinenko O, Schweiger S, Wüster W, Brito JC, Crnobrnja-Isailović J, Halpern B, Fahd S, Santos X, Pleguezuelos JM, Joger U, Orlov N, Mizsei E, Lourdais O, Zuffi MA, Strugariu A, Zamfirescu ŞR, Mar¬tínez-Solano Í, Velo-Antón G, Kaliontzopoulou A, Martínez-Freiría F2020. Evaluating taxonomic inflation: towards evi¬dence-based species delimitation in Eurasian vipers (Ser¬pentes: Viperinae). Amphibia-Reptilia 41(3): 285-311. https://doi.org/10.1163/15685381-bja10007

Frynta D, Moravec J, Čiháková J, Sádlo J, Hodková Z et al. 1997. Results of the Czech Biological Expedition to Iran. Part 1. Notes on the distribution of amphibians and reptiles. Acta Soc Zool Bohem 61: 3-17.

Gutiérrez JM, Williams DJ, Fan HW, Warrell DA 2010. Snake¬bite envenoming from a global perspective: towards an inte¬grated approach. Toxicon 56: 1223-1235. https://doi.org/10.1016/j.toxicon.2009.11.020

Habibzadeh N, Ludwig T 2019. Ensemble of small models for estimating potential abundance of Caucasian grouse (Lyrurus mlokosiewiczi) in Iran. Ornis Fenn 96: 77-89.

Habibzadeh N, Ghoddousi A, Bleyhl B, Kuemmerle T 2021. Rear-edge populations are important for understanding cli¬mate change risk and adaptation potential of threatened spe¬cies. Conserv Sci Pract 3: e375. https://doi.org/10.1111/csp2.375

Harrison RA, Wüster W, Theakston RDG 2003. The conserved structure of snake venom toxins confers extensive immuno¬logical cross-reactivity to toxin-specific antibody. Toxicon 41: 441-449. https://doi.org/10.1016/S0041-0101(02)00360-4

Hijmans RJ, Graham CH 2006. The ability of climate envelope models to predict the effect of climate change on species dis¬tributions. Glob Change Biol 12: 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A 2005. Very high resolution interpolated climate surfaces for global land areas. Int JClimatol 25: 1965-1978. https://doi.org/10.1002/joc.1276

Hosseinzadeh MS, Fois M, Zangi B, Kazemi SM 2020. Predict¬ing past, current and future habitat suitability and geographic distribution of the Iranian endemic species Microgecko latifi (Sauria: Gekkonidae). JArid Environ 183: 104283. https://doi.org/10.1016/j.jaridenv.2020.104283

IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-3. https://www. iucnredlist.org (Accessed 10 Feb 2023).

Joger U 1984. The venomous snakes of the Near and Middle East. Beihefte zum Tübinger Atlas des Vorderen Orients 12: 1-115.

Kaky E, Gilbert F2017. Predicting the distributions of Egypt’s medicinal plants and their potential shifts under future cli¬mate change. PLOS ONE 12: e0187714. https://doi.org/10.1371/journal.pone.0187714

Kaky E, Gilbert F2019. Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrat¬ing species distribution models and IUCN Red List criteria. JArid Environ 170: 103988. https://doi.org/10.1016/j.jaridenv.2019.05.016

Kaky E, Nolan V, Khalil MI, Mohammed AMA, Jaf AA A, Mohammed-Amin SM, Mahmood YA, Gilbert F2023. Con¬servation of the Goitered gazelle (Gazella subgutturosa) under climate changes in Iraq. Heliyon 9: e12501. https://doi.org/10.1016/j.heliyon.2022.e12501

Karami S, Ejtehadi H, Moazzeni H, Vaezi J, Behroozian M 2022. Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia. Sci Rep 12: 19893. https://doi.org/10.1038/s41598-022-24524-8

Kasturiratne A, Wickremasinghe AR, De Silva N, Gunawardena NK, Pathmeswaran A et al. 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLO S MED 5: e218. https://doi.org/10.1371/journal.pmed.0050218

Kazemi SM, Rastegar-Pouyani E, Shafiei Darabi SA, Ebrahim Tehrani M, et al. 2015. Annotated checklist of amphibians and reptiles of Qom Province, central Iran. Iranian J Anim Biosyst 11: 23-31. https://doi.org/10.22067/ijab.v11i1.37543

Kazemi SM, Al-Sabi A, Long C, Shoulkamy MI, Abd El-Aziz T 2021. Recent case reports of Levant blunt-nosed viper Macrovipera lebetina obtusa snakebites in Iran. Am J Trop Med Hyg 104: 1870-1876. https://doi.org/10.4269/ajtmh.20-1640

Kazemi SM, Hosseinzadeh MS, Weinstein SA 2023. Identifying the geographic distribution pattern of venomous snakes and regions of high snakebite risk in Iran. Toxicon 231: 107197. https://doi.org/10.1016/j.toxicon.2023.107197

Li Y, Li M, Li C, Liu Z 2020. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11: 302. https://doi.org/10.3390/f11030302

Manel S, Williams HC, Ormerod SJ 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38: 921-931. https://doi.org/10.1046/j.1365-2664.2001.00647.x

Maritz B, Penner J, Martins M, Crnobrnja-Isailović J, Spear S et al. 2016. Identifying global priorities for the conservation of vipers. Biol Conserv 204: 94-102. https://doi.org/10.1016/j.biocon.2016.05.004

Meng H, Carr J, Beraducci J, Bowles P, Branch WR, Capitani C et al. 2016. Tanzania’s reptile biodiversity: distribution, threats and climate change vulnerability. Biol Conserv 204: 72-82. https://doi.org/10.1016/j.biocon.2016.04.008

Moradi N, Rastegar-Pouyani N, Rastegar-Pouyani E 2014. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol 9: 187-202. https://doi.org/10.13128/Acta_Herpetol-14384

Needleman RK, Neylan IP, Erickson T 2018. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness Environ Med 29: 226-238. https://doi.org/10.1016/j.wem.2017.11.004

Newth D, Gunasekera D 2018. Projected changes in wet-bulb globe temperature under alternative climate scenarios. Atmosphere 9: 187. https://doi.org/10.3390/atmos9050187

Nori J, Carrasco PA, Leynaud GC 2014. Venomous snakes and climate change: ophidism as a dynamic problem. Clim Change 22: 67-80. https://doi.org/10.1007/s10584-013-1019-6

Ochoa-Ochoa LM, Campbell JA, Flores-Villela OA 2014. Patterns of richness and endemism of the Mexican herpetofauna, a matter of spatial scale. Biol J Linn Soc 111: 305-316. https://doi.org/10.1111/bij.12201

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Biosci 51: 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Oraie H 2020. Genetic evidence for occurrence of Macrovipera razii (Squamata, Viperidae) in the central Zagros region, Iran. Herpetozoa 33: 27-30. https://doi.org/10.3897/herpetozoa.33.e51186

Oraie H, Rastegar-Pouyani E, Khosravani A, Moradi N, Akbari A et al. 2018. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54: 233-248.

Phillips SJ, Anderson RP , Schapire RE 2006. Maximum entropy modelling of species geographic distributions. Ecol Model 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pintor AFV, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ 2021. Addressing the global snakebite crisis with geo-spatial analyses – Recent advances and future direction. Toxicon X 11: 100076. https://doi.org/10.1016/j.toxcx.2021.100076

Scherrer D, Esperon-Rodriguez M, Beaumont LJ, Barradas VL, Guisan A 2021. National assessments of species vulnerability to climate change strongly depend on selected data sources. Divers Distrib 27: 1367-1382. https://doi.org/10.1111/ddi.13275

Sindaco R, Venchi A, Grieco C 2013. The Reptiles of the Western Palearctic, Vol 2: Annotated Checklist and Distributional Atlas of the Snakes of Europe, North Africa, Middle East and Central Asia, with an Update to Volume. Monografie della Societas Herpetologica Italica. II. Edizioni Belvedere, Latina.

Sinervo B, Méndez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894-899. https://doi.org/10.1126/science.1184695

Turkozan O, Karacaoğlu Ç, Parham JF 2021. Reconstructions of the past distribution of Testudo graeca mitochondrial lineages in the Middle East and Transcaucasia support multiple refugia since the Last Glacial Maximum. Herpetol J 31: 10-17. https://doi.org/10.33256/31.1.1017

Uetz P, Freed P, Aguilar R, Hošek J 2022. The Reptile Database. http://www.reptile database.org. Accessed 28 Jul 2022.

Valtueña FJ, Fernández-Mazuecos M, Rodríguez-Riaño T, López J, Ortega-Olivencia A 2020. Repeated jumps from Northwest Africa to the European continent: The case of peripheral populations of an annual plant. J Syst Evol 58:487-503. https://doi.org/10.1111/jse.12531

Wang WJ, He HS, Thompson FRfr, Spetich MA, Fraser JS 2018. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change. Sci Tot Environ 634: 1214-1221. https://doi.org/10.1016/j.scitotenv.2018.03.353

Williams D, Gutiérrez JM, Harrison R, Warrell DA, White J et al. 2010. The Global Snake Bite Initiative: an antidote for snake bite. Lancet 375: 89-91. https://doi.org/10.1016/S0140-6736(09)61159-4

World Health Organization – WHO 2018. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. WHO technical report series No. 1004, annex 5.

Yañez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E 2014. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLO S ONE 9: e100957. https://doi.org/10.1371/journal.pone.0100957

Similar Articles

You may also start an advanced similarity search for this article.